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The finite elements method and finite differences method are used together 
to study a nonsteady three-dimensional coupled problem of convective heat 
transfer during longitudinal flow about a bundle of heat-emitting rods. 

Nonsteady coupled heat-transfer problems are of practical interest in connection with 
problems of regulating and controlling heat exchangers operating under heavy thermal loads 
and designing exchangers in which the supply of heat-transfer agent is unsteady. 

Let laminar steady hydrodynamically stabilized flow of a viscous incompressible fluid 
with a mean velocity Wz occur in a rod bundle with the volume rate of heat release 

Q~ = q.lq. = 1,25cos [0,722 (2z-- 1) a/2] (1) 
the flow being due to a constant pressure gradient. Weassume the thermophysical properties 
of the fluid, rods, and shells to be constant. The fluid has a constant temperature To at 
the inlet of the channel. The wall of the channel is thermally insulated. Internal heat 
release in the system results in the formation of a stationary temperature field. At the 
moment of time z = 0 +, pulations are superimposed on the stationary pressure gradient. The 
pulsations are such that the instantaneous pressure gradient is a periodic function of time: 

Op/Oz = (dp/dz)~ (1 + ?[ (~)). (2)  

Here, the velocity vector of the fluid remains parallel to the tube axis z, i.e., w x = Wy = 
0, and it follows from the continuity equation that ~Wz/SZ = 0. 

The following equations are included in the boundary-value problem of coupled heat 
convection in a bundle of fuel elements for the functions 9 i = X3(T i - T0)/~v d2 (i = i, 2, 
3): 

the energy equation 

OO~ OOi ( OzOi 
K~iT~o + P e L W  =K~i + OZ \ OX 2 

+Qi(X, Y, Z, Fo) 

OzOi ~_L z O~ei~ 
Oy2 OZ ~ ]'q- (3) 

and the equation of motion 

c)W ----Pr ( 02W OzWh 1 d ~RePr[l+y/(MPrFo)l (Fo>O; 
0 F---J ~ Ox~ + Ow J + 2 d~- (4)  

X, Y E f23). 

The velocity function W is equal to zero in the regions R I and ~2. The function Ql is de- 
termined from Eq. (i), while Q2 = 0 and Qs = Br[(3W/SX) = + (SW/SY)2] �9 

As the initial conditions for temperature, we chose the solution of the corresponding 
steady-state problem with a steady fluid flow 

@~(X, Y, Z, O)=@~(X, r ,  z), i = 1 ,  2, 3, (5) 

while the initial conditions for velocity consists of the velocity profile of a hydrodynami- 
cally stabilized steady flow: 

~' (x, Y, o) = w~ (x, r).  (6) 
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Fig. I. Difference between unsteady and steady values of heat flux 
(a) and temperature (b), averaged over the surface of the rod casing, 
for the first (solid lines) and second (dashed lines) variants of 
pulsating flow. 

Fig. 2. Effect of the thermal conductivity of the components of a 
translational element of a bundle of fuel elements on heat transfer: 
i) KXI = 7.9; KX2 = 30.1; KX3 = i; 2) KXI = 0.158; KX2 = 0.6; KX2 = i. 

Fig. 3. Effect of the volumetric heat capacity of the components of 
a translational element of a fuel-element bundle on heat transfer: 
I) Kcl = 2.13; Kc= = 1.8; Kc3 = i; 2) Kc~ = 0.24; Kc2 = 0.2; Kc3 = i. 

The functions Ois and W s were determined by the finite elements method [i]. The following 
conditions were assigned at the inlet and outlet of the heat-transfer section 

O@/OZ~O@JOZ==O, 6)3-~0 for Z = O, ( 7 )  

O01/OZ = OOz/OZ =O08/OZ = 0 for Z = 1. ( 8 )  
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Conditions of ideal thermal contact were assigned on the surface washed by the fluid and 
the cylinder-shell contact surface. 

The complexity of studying the process described by boundary-value problem (1)-(8) 
stems from the need to solve a system of partial differential equations in a region of com- 
plex form. Among the studies of coupled heat transfer in the case of longitudinal flow 
about heat-emitting rods, we should point out the monograph [2]. The authors of [2] em- 
ployed electrical modeling to calculate the steady-state temperature fields in a system 
comprised of a heat-emitting rod and a coolant. Steady-state coupled problems in channels 
of complex form were studied by approximate analytical methods in [3] and by the finite 
elements method in [4]. Unsteady coupled heat transfer was studied in channels of simple 
form by numerical and experimental methods in [5-7]. 

To study unsteady coupled fieat transfer in longitudinal steady hydrodynamically-stabi- 
lized flow about a bundle of heat-emitting rods in [8], the authors proposed a quite labo- 
rious method based on the principle of superposition for linear problems. In [9, i0], we 
tried using a more universal approach involving joint application of the finite elements 
method for the elliptical coordinates of the channel cross section and the finite differ- 
ences method for the parabolic coordinates (time and the axial coordinate) to solve unsteady 
coupled problems of convective heat transfer in tubes of complex form with a hydrodynamically- 
stabilized flow of fluids. No previous investigations have been made of a coupled heat- 
transfer problem involving unsteady flow about a rod bundle with nonuniform heat release 
along the channel using the formulation (1)-(8). 

To solve problem (1)-(8), we used both the finite elements method and the finite dif- 
ferences method [9]. The two methods were incorporated into a single application package 
[i0]. The effect of the unsteadiness of the flow on heat transfer was studied with two 
laws of change in the pressure gradient: 

[sinl~o~ 3 - -  ~ ~ < c o ~ < 2 ~ ,  at 0~<a/2and 2 

f (co'c) = at z~/2 ~ o)I: < n;, (9) 

~-- 1 at a ~ co~ < 3 / 2 ~ ;  

f(mz)=:sino~T at 0~<co'~<2~. (i0) 

In calculations of the cross section of the channel, we used 840 triangular elements with 
462 nodes. We used the iterative difference scheme in [ii] for the variables Fo and Z. 
Also, we assumed that Pr = i; y = 0.9; Re = 200; L = 0.02; ~/d = 0.06; Br = 0; M = 2.7; the 
packing-density parameter of the bundle ~ = 1.2. Figure i, with KXl = 7.9; KX = 30.1; 

2 
KX = i; K c = 0.71; K c = 0.6; Ko = i, shows the difference between the instantaneous un- 

3 1 2 
steady and steady values of heat f~ux (Fig. la) and temperature (ib) on the rod surface for 
different flow variants with the same mean (over time and the cross section) velocity ~z, 
determined by Eqs. (9) and (i0). It can be seen from Fig. i that the amount of deviation 
of the theoretical characteristics of unsteady heat transfer from the steady-state charac- 
teristic changes not onlywith respect to time, but also the lengthof the channel. This canbe at- 
tributed to the nonuniformityof the heat release. It is also evident from Fig. i that a change in 
the character of flow also causes substantial deviations of theheat-transfer characteristics from 
the steady-state values. These deviations are more significant with regard to heat flux 
than temperature. Figure 2 illustrates the effect of a change in the heat-conducting proper- 
ties of a translational element on the difference between the values of heat flux (a) and 
temperature (b) averaged about the perimeter of a heat-emitting element with pulsating [in 
accordance with (9)] and steady flow of the coolsnt at the same mean (with respect to time 
and the cross section) velocity Wz (Kc = 0.71; K c = 0.6; K c = i). It follows from Fig. 

. . S. 

2 that a change in the thermal conductlvltles of t~e rod materlal and coolant has a greater 
effect on the temperature distribution along the channel than On the change in heat flux. 
Figure 3 showS the effect of the volumetric heat Capacity of the components of a transla- 
tional element of a bundle of heat-emitting rods on the difference between the values of 
heatflux (a) and temperature (b) averaged about the perimeter of the element with pulsating 
[in accordance with (9)] and steady-state flow of the fluid at the mean velocity ~z (Kx I = 
7.9; K12 = 30.1; K13 = i). It is evident from Fig. 3 that, in contrast to a change in ther- 
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mal conductivity, a change in volumetric heat capacity causes substantial deviations in 
the distribution of both heat flux and temperature. Meanwhile, an increase in the heat 
capacity of the heat-emitting elements leads to an increase in deviations of heat flux from 
the steady-state regime and a reduction in deviations of element temperature from the steady- 
state regime. 

Thus, the completed calculations illustrate the degree to which unsteadiness of the 
flow affects heat transfer, and they confirm that to obtain the most reliable information, 
heat-transfer characteristics should be calculated in a coupled formulation. 

NOTATION 

01, 02, @3, dimensionless temperatures of the fuel element, casing, and fluid, respec- 
tively; X = x/d, Y = y/d, Z = z/s dimensionless coordinates; Fo = a3T/d 2, Fourier number; 
W = Wz/~z, dimensionless longitudinal velocity of the coolant; y, dimensionless amplitude 
of oscillations of the pressure gradient; (dp/dz)s, steady-state component of the pressure 
gradient; m, frequency of oscillation; d, diameter of the external surface of a casing with 
the thickness 6; qv, volumetric heat flux averaged over the length; Re = ~zd/~3, Reynolds 
number; 2b, distance between centers of the fuel elements; qa, Ta, heat flux and temperature 
averaged over the perimeter of the casing, respectively; s, index denoting that the corre- 
sponding quantity pertains to the steady-state process; L = d/s Kki = ki/k3; Kci = Pici / 
(p3c3); M = md2/v3. 
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